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Response to Professor David Mackay’s comments on my paper 

Gordon Hughes 

 

The mathematics of Professor Mackay’s proposition   

In his paper Professor Mackay claims that the model which I used to estimate the decline of 
performance of wind farms with age is not identified.  He argues that it is possible to make 
an arbitrary change in the coefficient on age with no effect on the errors of the equation.  
While I have no quarrel with his mathematics, it appears that Professor Mackay has failed to 
recognise that he has imported some rather special assumptions about the nature of the data 
and the way in which my model has been estimated. 

To explain my argument it is instructive to provide a slightly different version of his analysis 
designed to highlight the source of the problem of non-identification in this context.  The 
key point is that under a particular set of assumptions the model can be rewritten so that the 
time variable occurs twice.  This implies that the age variable and a time trend which forms 
part of the time effects are collinear.  For simplicity, I will develop the argument for a 
version of the specification that Professor Mackay uses to estimate rates of decline in 
performance in his Section 3.  This is: 

 log( [ ,3])it it it i t ity ma lf a u v .  (1) 

He assumes that the age of plant i in time period t is it ia t b .  Without loss of generality 

we can rewrite the period effects to include an arbitrary time trend: 
( )t t it i tv t v a b v .  Thus, equation (1) can be rewritten as 

 ( )it it i it i t ity a u a b v   (2) 

or 

 ( )it it i t ity a u v   (3) 

where i i iu u b .  To maintain the assumption that the wind farm site effects sum to zero 

we need to define 

 
1

1ˆ ( )
N

i i i i i i
i

u u u u b u b b
N

. (4) 

where b is the average value of the bi.  Similarly, the period fixed effects are normalised as 
follows: 
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Then: 
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 ˆ ˆ( ) ( )it it i t ity b t a u v  . (6) 

In words, the period fixed effects have been expressed as the sum of a time trend ( t ) and a 
different set of period fixed effects.  Since age is a linear function of time, the time trend can 
be expressed as a function of age with an adjustment for the birth date of the wind farm 
which is collected into the site fixed effects.  Then, an adjustment is made to the constant 
term to maintain the assumption that the site and period fixed effects are each normalised to 
sum to zero.   

This is the logic which underpins Professor Mackay’s claim that my model is not identified.  
Under his assumptions the coefficient  can be replaced by ( )  for any arbitrary value 

of  without altering the errors it  that are minimised in estimating the equation.  

However, the result is not general because his assumptions are stronger than he realises.  
What he has demonstrated is that my model might not be identified, but he has not shown 
that the variant of the model which I have actually estimated is not identified.  In fact, as I 
will explain, non-identification is such a routine problem in statistical models of this kind 
that all statistical software in general use contains standard checks and adjustments to deal 
with it.  It is difficult for an applied statistician to miss the symptoms of non-identification. 

 

Identification 

Professor Mackay suggests that the only way in which lack of identification can be or has 
been avoided is via the method of normalising the fixed effects, which he suggests will lead 
to arbitrary results.  Further, he asserts that the problem of non-identification is independent 
of the method of estimation, because his view of the estimation is that it applies literally to 
the model written out in equations (1) or (6).  Both of these assertions are incorrect because 
all efficient methods of estimating a model of this kind involve some kind of transformation 
designed partly to reduce the number of parameters to be estimated – e.g. by eliminating the 
site effects - and partly to avoid the danger of non-identification in general. 

In practice, there are many ways in which statistical models are identified.  These methods 
of identification do not, as a general rule, affect the parameters of interest.  Instead, the 
adjustments required for identification are typically captured in the constant term, which is 
viewed as a nuisance parameter.  In the case of my analysis, there are multiple potential 
sources of identification, though in practice the first is critical. 

A. The analysis presented above relies entirely on a crucial substitution linking age and 
time: it it a b .  Given the structure of the data this assumes that monthly period 

effects are matched by measuring age in months.  However, that is not the way in 
which my model is specified since I have measured age in years.  It follows that age 
is a nonlinear function of time as in: ( )it ia h t .  Now, (3) becomes 
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 1( )it it i it i t ity a h a u v   (7) 

which means that the collinearity is removed provided that 1
ih is not a single-valued 

linear function of age.  With a little mathematical manipulation it is possible to 
generalise the argument developed above, but only for a specification of the form 

( )it ia h t b .  This would be the case if all wind farms commenced their operations 

in the same month of the year.  For practical purposes, the combination of measuring 
age in year and time in months will ensure that the model is identified.  

Even when both age and time are measured in months, Professor Mackay’s strictures 
will not always apply.  The result requires that all of the period effects can be altered 
by different amounts.  However, it is common to assume a period error structure that 

can be written as: M Y
t t tv v v  where the first component is a monthly effect over all 

years and the second component is a yearly effect over all months in the year.  To 
illustrate the point, suppose that we were to estimate a model in which the period 
effects take the form of a monthly deviation from the annual average – or relative to 
the value for some base month – but with no variation across years.  That 
specification is only consistent with equation (5) if 0 .     

B. A standard method of identification in statistics is via what are called exclusion 
restrictions, i.e. by setting certain coefficients equal to zero.  The transformation of 
the model so that it can be estimated without site effects is a form of exclusion 
restriction.  An alternative exclusion restriction would be to drop the linear term 
from the model that is estimated.    

To illustrate the point, consider the more general version of equation (1) with: 

 ( )it it i t ity f a u v  . (8) 

 As Professor Mackay argues, this can be rewritten as: 

 ˆ ˆ( ) ( )it it it i t ity b t f a a u v   (9) 

Now suppose that f(a) is not linear and we estimate equation (9) without any linear 
term.  This is an exclusion restriction which identifies the model by ensuring that 

0 .  Note that the previous point may be thought of as a variant of this if equation 
(7) is expressed in terms of time rather than age.     

C. An alternative form of exclusion restriction is to transform the model so that it is 
estimated without a constant term.  The classic methods of doing this are to estimate 
the model using either (a) first or annual differences of the data, or (b) differences 
relative to the mean over all sites for each time period (known as the between 
estimator).  It is trivial to show that either of these methods requires that 0 .   
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There may be other sources of identification in other variants of the model.  The general 
point is that the details of data transformations and methods of estimation matter.  This is 
not a theorem that is independent of these details.  Thus, whether or not a general model is 
identified when applied in specific circumstances can only be established by considering all 
of these details and/or by relying on standard numerical methods designed to flag when a 
model is not identified.  

In the case of my analysis the key source of identification is A above, i.e. the fact that age is 
measured in years while all of the time effects are based on months.  This can be confirmed 
by  re-specifying  age  as  being  measured  in  months  in  which  case  the  symptoms  of  non-
identification appear immediately.  These symptoms take the standard form of collinearity 
leading to one of the time dummies being dropped.  That effectively fixes a value of 0  
and the value of  is reported as the coefficient on (monthly) age.  It is easy to confirm 

that dropping different time dummies – e.g. for the first period or the last period – generates 
very different coefficients on age.   

Reliance upon the timing of birth dates as a method of identification or as an instrumental 
variable is not unusual in other branches of economics, especially in labour economics.  In 
this case, there is a strong seasonal element to the performance of wind farms so that it is 
entirely natural to measure age in years while including monthly period effects.   

 

Statistical background 

To understand what is meant by non-identification or lack of identification it is helpful to 
think of the classic linear model: 

 
1

K

t k kt t
k

y x   (10) 

or in matrix notation 

 y X .  (11) 

Intuitively, it should be obvious that it will be impossible to estimate distinct values for all of 
the  coefficients if two or more of the x variables are collinear, i.e. if there is some 
subsidiary relationship such that the variable xi can be expressed as a linear combination of 
other x variables as in 

 i j j
j i

x x . (12) 

Under such circumstances it will only be possible to estimate a linear combination C  of 

the  coefficients where one of the dimensions of C – and thus its rank – is less than K, the 
number of  coefficients.  Normally, this is done by dropping the collinear variable from the 
estimation, i.e. by setting its coefficient to zero. 
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All of this is standard in applied statistics.  The problem of accidental non-identification 
arises quite frequently in statistical models when dummy variables are used to represent 
fixed effects because the analyst may not be aware that the data embeds subsidiary 
correlations between these fixed effects.  As an example, accidental non-identification may 
occur if an equation is estimated that includes a complete set of dummy variables for every 
month in the year or both genders along with a constant term . 

Since accidental non-identification is routine in applied statistics, every statistical package in 
general use will automatically test for collinear variables and non-identification before 
executing the calculations required to estimate the  coefficients.  Such a test is easily carried 
out as it is sufficient to calculate the rank of the matrix X’X obtained from equation (11).  
Since the matrix X has K+1 columns (including a column of 1’s  for the constant term),  the 
test is whether the rank of X’X is less than or equal to K+1.  If the rank of X’X is less than K+1 
then it is said to be a singular matrix.  If X’X is singular, most software will calculate which 
variables are collinear, report the error and drop at least one of the collinear variables from 
the estimation. 

As  testing  for  collinearity  is  routine,  it  would  be  surprising  if  the  symptoms  of  the  non-
identification claimed by Professor Mackay had not shown up in my empirical work.  In any 
case, even if non-identification had not been explicitly flagged and allowed for, there are 
other  symptoms  which  are  hard  to  miss.   Suppose  that,  as  a  result  of  rounding  errors  or  
other numerical inaccuracies, the rank of X’X is not clearly less than K+1.  At a later stage in 
any least squares estimation the inverse of X’X is calculated – usually not directly but the 
procedure involves a series of calculations that are equivalent.  This operation is numerically 

unstable if the model is not identified.1  As a consequence the reported results of the 
estimation will change dramatically with small adjustments to the model or even when the 
estimation is run on different computers.  Almost invariably, the reported standard errors of 
some of the coefficients take on extreme values. 

So, if Professor Mackay’s proposition that the effect of age on performance cannot be 
identified in this model were correct it would mean that everyone who has analysed the 
data has somehow missed or failed to report the symptoms of non-identification.  Since they 
are so obvious, this seems unlikely but stranger things have happened.  Hence, I have 
explicitly tested his assertion using the data which he examines, i.e. the log of the 3 month 

                                                   

1  There  are  standard  procedures  for  calculating  what  is  known  as  the  generalised  inverse  of  a  
singular matrix.  However, statistical software does not use this approach, precisely because it would 
mask the symptoms of collinearity.  It is less efficient than routines that exploit the specific structure 
of the matrix X’X.  In any case, even if the generalised inverse were to be used, the coefficient on the 
collinear variable would finish up being set to zero.     
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moving average of load factors for wind farms in existence in 2004.  Empirically I find that it 

is not valid.2   

Earlier in this note I have explained that the source of identification in this model lies in the 
fact that age has been measured in years whereas the period effects are monthly.  I have 
repeated the test using age measured in months rather than years.  As expected, the 
estimation procedure reports collinearity and sets one of the dummy variable to zero, thus 
generating an arbitrary solution.  The test of the residual sums of squares for a range of age 
coefficients confirms that the model is not identified.   

The results of this exercise are clear.  The model which I have estimated with age measured 
in years does not suffer from a lack of identification.  On the other hand, the same model 
with age measured in months is not identified and is properly flagged as such by the 
statistical procedures. 

      

Conclusion 

The difference between Professor Mackay and myself does not concern theorems, it is about 
facts.  There is no disagreement that the general model which I specified and estimated to 
analyse the performance of wind farms as they age may not be identified.  However, there is 
nothing unusual about this.  There is a multitude of statistical models that, similarly, might 
not be identified.  The issue is whether as a matter of fact, given the transformation of the 
general model into the version that I have estimated, the results that I have obtained have 
been affected by the potential lack of identification. 

I have explained that identification in statistical models is routinely achieved by 
transforming variables or making assumptions about the structure of errors which remove 
collinearity.  In this case the key element is to measure age as a discrete variable in years 
rather than as a quasi-continuous variable in months.  There are strong seasonal patterns in 
wind availability and in the associated stresses on wind turbines, so this is an entirely 
natural transformation which reflects the physical reality of the factors likely to affect the 
performance of wind farms.   

Because non-identification is a routine problem in statistical analysis, its symptoms are well 
known and statistical packages contain checks and adjustments to spot and deal with it.  As 
is normal in any statistical study, I have carried out extensive tests of alternative 
                                                   

2  The test is carried out by fitting the equation ( )it it i t ity a u v  for different values of  

and  then  comparing  the  residual  sums  of  squares  (RSS)  –  i.e.  2

,
it

i t

.   The  values  of  RSS  are  not  

invariant with respect to changes in .  The changes in RSS due to changes in the age coefficient are 
not large, but that reflects the fact that the ratio of the age coefficient to its standard error is quite low, 
meaning that the coefficient is poorly determined.  However, that is quite different from a situation in 
the errors are identical for different values of . 
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specifications of my model using different methods of estimation.  These tests have revealed 
no symptoms of non-identification, while a simple direct test confirms that the estimated 
residual errors are altered by changing the value of the coefficient on age.  For these reasons, 
the possibility of non-identification highlighted by Professor Mackay does not, as a matter of 
fact, affect the results reported in my study.   

We must be very clear that there is a fundamental distinction between statistical models 
which are not fully identified, i.e. there is no unique solution given the data, and those 
which are poorly determined.  Lack of identification manifests itself as a pathological 
condition in which estimation is either not possible or generates extreme values for the 
standard errors.  No statistician should miss the symptoms.  Models which are poorly 
determined have large standard errors associated with the parameters of interest, so that 
there are wide confidence bands that describe the range of reasonable values for those 
parameters.  In a different context, econometricians discuss models which are said to be 
“weakly identified”.  What this means is that the models are formally identified – i.e. there is 
a unique solution to the equations – but the statistical properties of the data mean that the 
standard errors associated with that unique solution are rather large, i.e. the model is poorly 
determined. 

In Section 3 of his paper Professor Mackay offers some alternative estimates of the rate of 
decline in performance of wind farms based upon a subset of the data which I have 
compiled.  As I have explained, his model is simply a variant of one of my basic models in 
which the log of the load factor for a wind farm is replaced by the log of a moving average 
of the load factor with separate rates of decline for each month.  It is hard to understand 
why, as a matter of practicality or logic, one would wish to represent the decline in 
performance  as  a  function  of  the  month  in  the  year.   For  purposes  of  policy  or  economic  
analysis the primary interest must lie in assessing the average rate of decline in total output 
from one year to the next.  

For direct comparison with the results in my report I have estimated a version of Professor 

Mackay’s model using the same data but with the same rate of decline for all months.3  
There is one issue with his specification that needs to be spelled out and dealt with.  His 

                                                   

3  There are some technical differences between Professor Mackay’s analysis and my version of it.  He 
says that he has used 99 wind farms in existence in 2004.  My data, which is the source dataset, has 
only 94 wind farms that satisfy that criterion.  It is not clear how his moving averages deal with the 
first and final months of data.  He has imposed a constant annual rate of decline in performance over 
the  lifetime  of  a  plant,  whereas  my  original  study  allows  the  rate  of  decline  to  vary  with  age.   He  
reports rates of decline in the normalised load factors from age 1 to age 10.  It is not clear whether he 
has  excluded all  data  for  wind farms of  age 0  from the estimation of  his  fitted lines.   Separately,  it  
seems  that  his  basic  model  measures  age  in  months,  so  it  is  not  clear  how  the  age  1  estimates  are  
calculated – are they for the 13th month of operation or are they an average of the values for months 
13  to  24?   To  deal  with  these  differences  the  comparisons  reported  use  a  common  set  of  data  and  
methods other than for the factors discussed in the text. 
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analysis takes no account of the fact that the same sites are observed at repeated intervals.  
This leads to serial correlation of the errors as a result of persistent site effects, which can 
cause the coefficient on age to be more or less severely biased.  On testing it turns out that 
this bias is particularly large in months for which the estimated rate of decline is especially 
high, i.e. during the winter.  Hence, it is essential to strip out site effects and I have done this 
by applying the usual within transformation. 

The closest approximation that I can get to Professor Mackay’s model yields an average 
annual rate of decline from year 0 onwards of 2.05% per year with a 95% confidence interval 
of 1.27% - 2.82%.  Removing the duplication implied by use of moving averages rather than 
the simple monthly load factors increases the average annual rate of decline to 2.35%with a 
95% confidence interval of 1.53% - 3.17%.  As a comparison, the figures in my Figure 9B, 
which refer to the equivalent log-linear model, imply rates of decline of (i) 4.5% per year 
over 10 years and 5.1% per year over 15 years for the quadratic model, and (ii) 3.4% per year 
over 10 years and 6.1% per year over 15 years for the full age effects. 

Clearly there are differences in our estimates of the rate of decline but there is no doubt that 
the performance of wind farms does decline with age.  What is left is the task of assessing 
the average rate of decline and how this varies with other characteristics of wind farms.  My 
analysis goes beyond Professor Mackay’s in two respects.   

First, there seems to be a clear indication in my analysis that the rate of decline in 
performance accelerates as wind farms get older, so that models which impose a constant 
rate of decline perform less well than ones which do not include this restriction.   

Second, my analysis indicates that larger wind farms – and, probably, larger wind turbines – 
experience a more rapid decline in performance than smaller ones.  This is tied up with the 
issue  of  capacity  weighting.   Professor  Mackay’s  analysis  can  shed  no  light  on  this  issue  
because there were only 3 wind farms with a capacity > 30 MW in existence in 2004 whereas 
there were 27 that commenced operations after 2004 including all wind farms of > 60 MW 
capacity.  Large wind farms tend to rely upon large wind turbines (with a capacity of > 2 
MW) which only came into widespread use after 2002.  Work that I have carried out since 
my REF paper was written suggests that wind farms with large wind turbines have a 
distinctive pattern of performance.  They have higher load factors than wind farms with 
smaller turbines up to age 4 and then their performance starts to decline much more rapidly 
so that by age 8 they are no better than the average and the rate of decline suggests that they 
will be significantly worse by age 10 and thereafter. 

The idea that the performance of wind farms declines with age is regarded as perfectly 
normal by academic and other independent engineers.  It is true for other electro-mechanical 
equipment subject to large stresses, so why would wind turbines be any different?  There is 
an important question of whether the rate of decline can be slowed by adopting the best 
operational and maintenance practices.  Since I have no access to data on O&M expenditures 
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or regimes, I can only assess rates of declines in performance under the average O&M 
regime. 

In my presentations and my paper I have consistently emphasised that my work should be 
the beginning of a research program.  I believe that my results establish that there is a strong 
a priori case for believing that the decline in the performance of wind farms with age is 
sufficiently large to be a significant factor in the economics of wind generation.  Professor 
Mackay’s results seem to reinforce that conclusion.  As more data on the output from wind 
farms is accumulated it should be possible to strengthen the empirical analysis of the 
performance of wind generation, especially from age 8 onwards, which is critical to 
assessing the longevity of and returns to investment in the sector.  Technical issues of 
identification and estimation matter, but they are routine and easily dealt with.  What we 
need to focus on is how we can take better account of factors which may affect performance 
but  which  could  not  be  incorporated  in  my  models.   An  example  is  variations  in  wind  
resources, which both I and others are attempting to examine in more detail. 

 

 


